Hadron Suppression in DIS @HERMES

Pasquale Di Nezza

(on behalf of the UEDMES Collaboration)
INFN
Frascati

- ·DF and FF modification in a nuclear medium
- ·Nuclear attenuation measurements at HERMES
- Comparison with theory
- ·Hadron re-interaction vs partonic energy loss

DF and FF on Nucleon & Nuclear Medium

Interpretation at both hadronic (nucleon's binding, Fermi motion, pions) and partonic levels (rescaling, multi-quark system)

DF and FF on Nucleon & Nuclear Medium

FFs are measured with good precision and follow pQCD evolution like DFs (HERMES: EPJ C21(2001) 599). What happens in a nuclear medium?

Nuclear Attenuation

<u>Observation</u>: reduction of multiplicity of fast hadrons due to both *hard partonic* and *soft hadron interaction*.

Production and Formation Time measurements + FFs are crucial for the understanding of the space-time evolution of the hadron formation process

- The energy range is well suited to study quark propagation and hadronization
- Measurements over the full z range
- Possibility to use several different gas targets
- PId: □⁺, □⁻, □⁰, K⁺, K⁻, p, p̄

HERMES @ DESY

It is an experiment which studies

the spin structure of the nucleon ... and not only ...

 \cdot 27.5 GeV e+, $I_e \sim 40 \text{ mA}$

Last part of the fill dedicated to high-density unpolarised

target runs:

HERA Thu Apr 20 11:26:04 2000
p:3.1[mA] 5.2[h] 40[GeV] e+:0.0[mA] 0.0[h] 0.0[GeV]

The Internal Target

- ·Internal storage cell
- Pure gas target, no dilution factor
- ·Nuclear targets: (H, D), ³He, ⁴He, ¹⁴N, ²⁰Ne, ⁴⁰Ar, ⁸⁴Kr, ¹³¹Xe
- •Densities: ~10¹⁵ 10¹⁷ nucl*cm⁻²

The Spectrometer

- ·e+ identification: 99% efficiency and <1% of contamination
- ·PID: RICH, TRD, Preshower, e.m. Calorimeter
- ·For N target: by Cerenkov pion ID in the range 4<p<14 GeV
- •For He, Ne, Kr target: by RICH □, K, p ID in the range 2.5<p<15 GeV

Particle Identification

Positron - hadrons separation:

<u>Double radiator RICH</u>: Aerogel + C_4F_{10} . Cerenkov photons detected by ~4000 PMTs.

<u>Detection efficiency</u>: 99% (□), 90% (K), 85-95% (p)

Hadron Attenuation

- ·Clear nuclear attenuation effect
- •Increase with \square consistent with EMC data at higher energy
- •Discrepancy with SLAC due to the EMC effect, not taken into account at that time
- HERMES kinematics is well suited to study quark propagation and hadronization

Hadron Attenuation

•Significant attenuation of fast forward hadrons
•HERMES data provide information in the

Hadron separation vs [

HERMES, PLB 577 (2003) 37

Hadron separation vs [

HERMES, PLB 577 (2003) 37

Hadron separation vs [

HERMES, PLB 577 (2003) 37

Hadron separation vs

HERMES, PLB 577 (2003) 37

Experimental findings:

$$\square^+ = \square^- = \square^O \sim \mathsf{K}^-$$

$$K^+ > K^-$$

Hadron separation vs z

HERMES, PLB 577 (2003) 37

Different FF modification for quark and anti-quark

Different \square_n for mesons and baryons

Different \Box_h :

Nuclear Attenuation on He, Ne, Kr

Nuclear Attenuation on He, Ne, Kr

Nuclear Attenuation on He, Ne, Kr

Nuclear Attenuation vs Q²

Dependence on \mathbb{Q}^2 : stronger at small \square , weaker at high \square

P_t dependence

In pA collisions the p gains extra transverse momentum due to random soft collisions. Partons enter the final hard process

with extra kt (Cronin eff.) $\Box_{pA} = A\Box(pt)\Box_{pp}$ 1.2

• \$\pi\$ Frisch et al.

• \$\pi\$ 200 GeV \$\pi\$ beam

• \$\pi\$ Garbutt et al,

• \$\pi\$ 250 GeV \$\pi\$ beam

• \$\pi\$ 6706, 515 GeV \$\pi\$ beam

• \$\pi\$ Chaney et al., 200 to 400 GeV \$\pi\$ beam

1

0.8

Multiple parton scattering effects become dominant at $p_t \sim 1-2$ GeV

p, (GeV/c)

P_t dependence

In pA collisions the p gains extra transverse momentum due to random soft collisions. Partons enter the final hard process

with extra kt (Cronin eff.)

P_t dependence

In DIS neither multiple scattering of the incident particle nor interaction of its constituents complicate the interpretation

Data show a p_t enhancement similar to that observed in pAscattering (Cronin effect)

The hard component of incoherent parton scattering becomes dominant at $p_t \sim 1-2$ GeV

Clean and reliable information on quark transport in 'cold' nuclear matter

Comparison with Theory

B.Kopeliovich et al., hep-ph/9511214 hep-ph/0311220

FF modification: Nuclear Suppression + Induced Radiation

- •<u>Vacuum energy loss:</u> $q \square gq'$. (dE/dz ~2.5 GeV/fm by E772/E866 for DY on nuclei)
- •Energy loss induced by multiple interactions in the medium (rising in p_t)
- ·Color Transparency of the qq (~1/Q2)

$$\widetilde{D}_{h/q}(z_h, Q^2) =$$

$$\int_{0} dtW(t, z_h, Q^2)$$

B.Kopeliovich et al., hep-ph/9511214 hep-ph/0311220

Nuclear Suppression + Induced Radiation

Fast pions are consistent with GB model (production length I_p (1- z_h) \square/Q^2 vanish at $z_h \rightarrow 1$)

B.Kopeliovich et al., hep-ph/9511214 hep-ph/0311220

Only prediction for h containing target valence quark.

Good agreement also for K⁺

B.Kopeliovich et al., hep-ph/9511214 hep-ph/0311220

Combined effects:

- pre-hadron shrinks at large Q²
- ·larger nuclear transparency

ennoduction langths contracts

Good description; Faster rise at high P_{+} ? FF and their QCD evolution are described in the framework of multiple nanton exottering (DGLAP).

Rescattering without gluon radiation: p₊-broadening.

Rescattering with another q: mix of q and g FF.

g-rescattering including g-radiation: dominant contribution in QCD evolution of FF.

- •The emitted g and the leading q propagate coherently \square Landau-Pomeranchuk-Midgal interference effects.
- ·Different modification of quark and antiquark FF.

FF modification (parton energy loss)

X.N.Wang et al., NPA696(2001)788 PRL89(2002)162301

- ·1 free parameter tuned on ¹⁴N (quark-gluon correlation strength inside nuclei)
- ·dE/dx for HERMES → dE/dx for PHENIX (Au)

Gluon Density

Cold <--> Hot nuclear
 matter correlation

•Gluon density in Au+Au~15 times higher than in cold matter

Rescaling + Absorption Model

$$\square_{A} > \square_{N}; \qquad \square_{A}(Q^{2}) = \square_{A}^{2} \square_{A}^{2} \square_{A}^{2}$$

A.Accardi et al., NPA720(2003)131

$$q_f^A(x, Q^2) = q_f(x, [Q^2]Q^2)$$

$$D_f^{h|A}(z,Q^2) = D_f^h(z, D_A(Q^2)Q^2)$$

Nice agreement for p+, p-, K+ with Q^2 -rescaling + nuclear absorption (lower curves).

(Pre-)Hadron FSI and formation times

T.Falter et al., nucl-th/0303011

 R_M is very sensitive to the \square_{pre-h} ; (\square_{pre-h} =0.33 \square_h) \square_{ϵ} >0.5 fm/c compatible with data

FF modification + transport coef.

F.Arleo et al., NPA715(2003)899

With formation time effect

Without formation time effect

- ·Energy loss taken into account
- Soft gluons radiated in the dense QCD medium (transport coefficient calculated from DY)
- ·Nice gareement with both

Disentangling absorption and induced energy loss

In case of absorption, suppression for double-hadron production is SMALL compared to single-hadron production

Could it be too naïve?

R₂ depends on:

- hadron production length
- ·local nuclear density
- absorption cross section
- •P_t, z₁, z₂, ...

Disentangling absorption and induced energy loss

Preliminary R₂ calculated for Kr/D and N/D:

• \square >7 GeV, E_h >1.4 GeV, $z_{leading}$ >0.5

· opposite charges neglected (rank-2)

$$R_2(Kr/D) = 0.929 \pm 0.025$$

$$R_2(N/D) = 0.946 \pm 0.018$$

Results from STAR show jet suppression is due to FSI (energy loss). No contribution from absorption ...

Disentangling absorption and induced energy loss

Preliminary R₂ calculated for Kr/D and N/D:

• \square >7 GeV, E_h >1.4 GeV, $z_{leading}$ >0.5

· opposite charges neglected (rank-2)

$$R_2(Kr/D) = 0.929 \pm 0.025$$

$$R_2(N/D) = 0.946 \pm 0.018$$

Results from STAR show jet suppression is due to FSI (energy loss). No contribution from absorption ... high Pt events, different z_h distributions. It's difficult to compare HERMES-

DUTC for the moment

Conclusions

- Significant hadron suppression, in a wide region of the kinematical plane, measured for ⁴He, ¹⁴N, ²⁰Ne, ⁸⁴Kr
- First observation of hadron-type dependence of the attenuation: \Box^+ , \Box^- , \Box^0 , K^+ , K^- , p, \bar{p}
- Large atomic mass number dependence
- The Cronin effect has been observed: transition occurs at $P_t \sim 1 \text{ GeV}$
- Large final hadron re-interaction is unlikely
- → Pre-hadronic re-interaction and/or partonic energy loss?

Outlook: Disentangle between [] and z dependence

Pt broadening for different hadrons

Double/Single-hadron ratio

Pasquale Di Nezza

Conclusions

- Significant hadron suppression, in a wide region of the kinematical plane, measured for ⁴He, ¹⁴N, ²⁰Ne, ⁸⁴Kr
- First observation of hadron-type dependence of the attenuation: \Box^+ , \Box^- , \Box^0 , K^+ , K^- , p, \bar{p}
- Large atomic mass number dependence
- The Cronin effect has been observed: transition occurs at $P_t \sim 1 \text{ GeV}$
- + Large final hadron re-interaction is unlikely
- → Pre-hadronic re-interaction and/or partonic energy loss?

GOAL

To obtain unambiguous information on hadron formation and transport in Cold Nuclear Matter

Double/Single-hadron ratio

Hadrons and Pions @ E_{beam}=12 & 27 GeV

Extension of the \square range down to 2 GeV

8.0

0.9

Z

